

Data Sheet March 10, 2005 FN3279.4

Radiation Hardened CMOS 8-Bit Flash Analog-to-Digital Converter

The Intersil HS-9008RH is a CMOS 8-Bit Flash Converter designed for space applications where relatively low power, exceptional accuracy and very fast conversion speeds are a necessity.

The HS-9008RH design differs substantially from most other available Flash Converters as it employs fully differential analog input sampling networks and amplifiers, as well as regenerative, offset nulled (error correcting) comparators. These circuit techniques improve noise performance and render the circuit much less sensitive to process and radiation induced device parametric shifts. Outstanding integral and differential linearity error is achieved through the use of a metal film resistor network which exhibits >10-bit linearity without trim. As a result of these innovations, the device operates with a single fixed reference supply as opposed to the multiple, adjustable references used in similar devices.

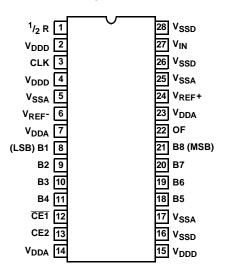
This combination of features makes the HS-9008RH one of the best 8-Bit Flash Converters available in the Commercial, Military or Rad Hard markets.

Specifications for Rad Hard QML devices are controlled by the Defense Supply Center in Columbus (DSCC). The SMD numbers listed here must be used when ordering.

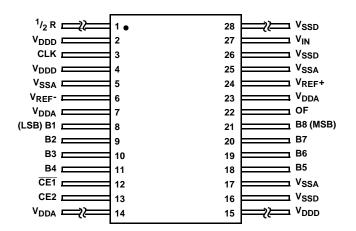
Detailed Electrical Specifications for these devices are contained in SMD 5962-96696. A "hot-link" is provided on our homepage for downloading.

http://www.intersil.com/spacedefense/space.htm

Ordering Information


ORDERING NUMBER	INTERNAL MKT. NUMBER	TEMP. RANGE (°C)
5962F9669601QXC	HS1-9008RH-8	-55 to 125
5962F9669601QYC	HS9-9008RH-8	-55 to 125
5962F9669601VXC	HS1-9008RH-Q	-55 to 125
5962F9669601VYC	HS9-9008RH-Q	-55 to 125
HS1-9008RH/Proto	HS1-9008RH/Proto	-55 to 125
HS9-9008RH/Proto	HS9-9008RH/Proto	-55 to 125
HS0-9008RH-Q	HS0-9008RH-Q	25

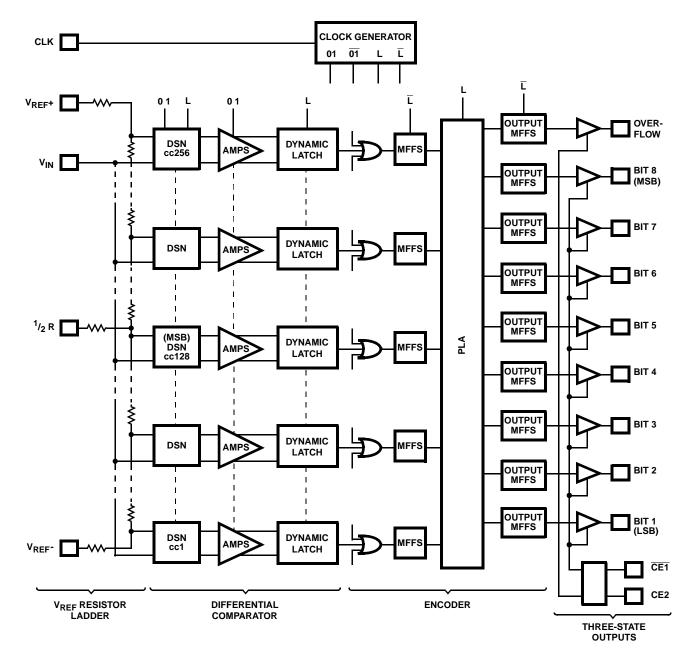
Features


- Electrically Screened to SMD # 5962-96696
- QML Qualified per MIL-PRF-38535 Requirements
- Excellent Noise Rejection Fully Differential Design
- Superior Linearity................. 0.5 LSB Typ
- · Single Reference Supply
- Sampling Rate (50ns Conversion Time) 20MHz
- Available with QML Class V or Class Q Screening

Pinouts

HS-9008RH (SBDIP) CDIP2-T28 TOP VIEW

HS-900RH (FLATPACK) CDFP3-F28 TOP VIEW


Pin Descriptions

_		
SBDIP/ FLATPACK PACKAGE PIN	NAME	DESCRIPTION
8	B1	(LSB) Output Data Bits
9	B2	Output Data Bits
10	В3	Output Data Bits
11	B4	Output Data Bits
18	B5	Output Data Bits
19	В6	Output Data Bits
20	В7	Output Data Bits
21	B8	(MSB) Output Data Bits
22	OF	Overflow
16, 26, 28	V _{SSD}	Digital Ground
2, 4, 15	V _{DDD}	Digital Supply
13	CE2	Three-State Output Enable
12	CE1	Three-State Output Enable
6	V _{REF} -	Negative Reference Input
27	V _{IN}	Analog Signal In
5, 17, 25	V _{SSA}	Analog Ground
3	CLK	Clock Input
1	1/2 R	Reference Midpoint
24	V _{REF} +	Positive Reference Input
7, 14, 23	V _{DDA}	Analog Supply

TRUTH TABLE

CE1	CE2	B1 - B8	OF
0	1	Valid	Valid
1	1	Three-State	Valid
Х	0	Three-State	Three-State

Functional Diagram

Die Characteristics

DIE DIMENSIONS:

180 mils x 197 mils x 21 \pm 1 mils

INTERFACE MATERIALS:

Glassivation:

Type: SiO₂

Thickness: 8kÅ ±1kÅ

Top Metallization:

Metal 1 - Type: Moly/TiW

Thickness: 5.8kA ±10%

Metal 2- Type: Al/Si/Cu

Thickness: 10kÅ ±10%

Backside Finish:

Silicon

Metallization Mask Layout

ASSEMBLY RELATED INFORMATION:

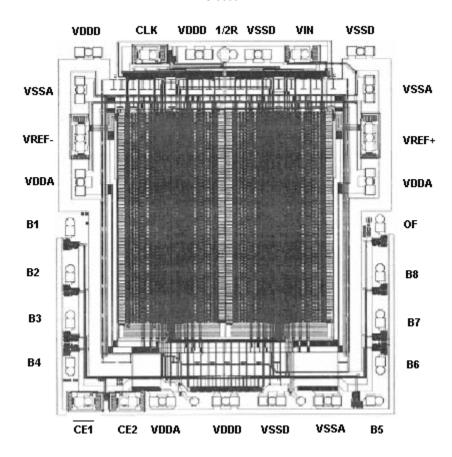
Substrate Potential (Powered Up):

 V_{DD}

ADDITIONAL INFORMATION:

Worst Case Current Density:

Metal 1 - Designs using the Intersil AVLSI-1RA process take advantage of the superior current carrying capabilities of Moly.TiW. The current density limit established by Intersil Reliability is 5.0 x 10⁵ A/cm²


FN3279.4 March 10, 2005

Metal 2 - 1.63 x 10⁵ A/cm²

Process:

AVLSI1RA

HS-9008RH

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

intersil